Tumor-targeting nanocomplex delivery of novel tumor suppressor RB94 chemosensitizes bladder carcinoma cells in vitro and in vivo.
نویسندگان
چکیده
PURPOSE RB94, a truncated form of RB110, has enhanced tumor suppressor potency and activity against all tumor types tested to date including bladder carcinoma. However, efficient, systemic delivery of the gene encoding RB94 specifically to tumors, is an obstacle to clinical application as an anticancer therapeutic. We have developed a systemically given, nanosized liposome DNA delivery system that specifically targets primary and metastatic disease. The ability of RB94, delivered via this nanocomplex, to sensitize bladder carcinoma to chemotherapy in vitro and in vivo was assessed. EXPERIMENTAL DESIGN The nanocomplex is an RB94 plasmid encapsulated by a cationic liposome, the surface of which is decorated with a tumor-targeting moiety, either transferrin (Tf/Lip/RB94) or an antitransferrin receptor single-chain antibody fragment (TfRScFv/Lip/RB94). The ability of the complex to sensitize human bladder carcinoma HTB-9 cells to chemotherapeutics was assessed in vitro by XTT assay. In vivo tumor specificity and efficacy were tested in mice carrying HTB-9 tumors by PCR and tumor growth inhibition, respectively. RESULTS Transfection with Tf/Lip/RB94 significantly sensitized HTB-9 cells to chemotherapeutic agents in vitro. Tumor specificity of the complex was shown in an orthotopic bladder tumor model by immunohistochemistry and PCR. Moreover, in mice bearing subcutaneous HTB-9 tumors, the combination of systemically given Tf/Lip/RB94 or TfRScFv/Lip/RB94 plus gemcitabine resulted in significant (P<0.0005) tumor growth inhibition/regression and induction of apoptosis. CONCLUSIONS Use of our tumor-targeting nanocomplex to specifically deliver the potent tumor suppressor RB94 efficiently to tumors has potential as a more effective treatment modality for genitourinary and other cancers.
منابع مشابه
Docetaxel delivery using folate-targeted liposomes: in vitro and in vivo studies
Objective(s): Folate-targeted liposomes have been well considered in folate receptor (FR) overexpressing cells including MCF-7 and 4T1 cells in vitro and in vivo. The objective of this study is to design an optimum folate targeted liposomal formulations which show the best liposome cell uptake to tumor cells.Material and Methods: In this study, we prepared and characterized different targ...
متن کاملmicroRNA-29a functions as a tumor suppressor in nasopharyngeal carcinoma 5-8F cells through targeting VEGF
Objective(s): microRNA-29 (miR-29) family miRNAs have been mentioned as tumor suppressive genes in several human cancers. The purpose of this study was to investigate the function of miR-29a in nasopharyngeal carcinoma (NPC) cells. Materials and Methods: Human NPC cell line 5-8F was transfected with mimic, inhibitor or scrambled controls...
متن کاملIdentification of a Novel Tumor-Binding Peptide for Lung Cancer Through in-vitro Panning
Tumor-targeted therapies are playing growing roles in cancer research. The exploitation of these powerful therapeutic modalities largely depends on the discovery of tumor-targeting ligands. Phage display has proven a promising high throughput screening tool for the identification of novel specific peptides with high binding affinity to cancer cells. In the present study, we describe the use of ...
متن کاملIdentification of a Novel Tumor-Binding Peptide for Lung Cancer Through in-vitro Panning
Tumor-targeted therapies are playing growing roles in cancer research. The exploitation of these powerful therapeutic modalities largely depends on the discovery of tumor-targeting ligands. Phage display has proven a promising high throughput screening tool for the identification of novel specific peptides with high binding affinity to cancer cells. In the present study, we describe the use of ...
متن کاملComparative Studies of High Contrast Fluorescence Imaging Efficiency of Silica-coated CdSe Quantum Dots with Green and Red Emission
Herein we report the possibility of using green and red emitting silica-coated cadmium selenide (CdSe) quantum dots (QDs) for remarkable stem and cancer cellular imaging, efficient cellular uptake and fluorescence imaging of semi and ultra-thin sections of tumor for in vivo tumor targeted imaging applications. The comparative studies of high contrast cellular imaging behaviours of the silica-co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 14 7 شماره
صفحات -
تاریخ انتشار 2008